

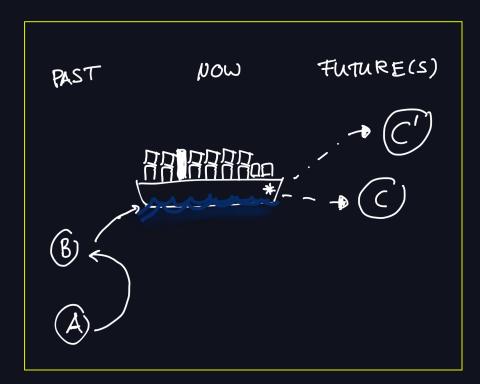
THE BEAUTY OF DELTA FOR POLYGLOT DATA AND ML WORKLOADS

Micha Kunze Date 2024-06-13

CONTEXT

We ship data and ML

- Transported by Maersk
- 20+ ML products
- 1200+ datasets for analytics and operational data
- Mixed batch and streaming



DATA PLATFORM

Batch & Streaming

- Apache Spark for batch and Structured Streaming
- Delta Lake
- Pandas
- Apache Flink

Analytics & Operations

- All datasets available in a metastore
- Structured Streaming to feed operational stores

Decision Automation

- 20+ ML products
- Simulations using historical data
- Integration with operational apps/services

THE BEAUTY OF DELTA [METADATA]

Self-described open table format

- No extra component needed (catalog)
- Protocol works with many engines
- Easy setup and testing

Rich metadata

- Transaction log + table history
- Change data feed
- Version control

THE BEAUTY OF DELTA [METADATA]

Self-described open table format

- No extra component needed (catalog)
- Protocol works with many engines
- Easy setup and testing

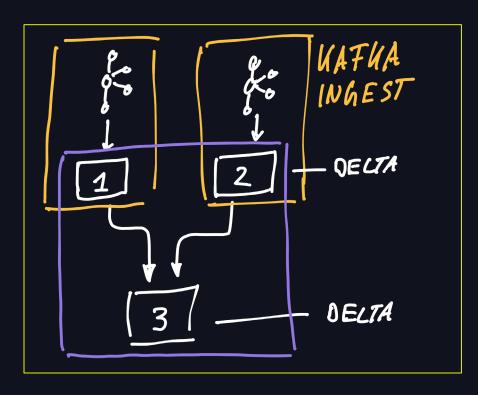
Rich metadata

- Transaction log + table history
- Change data feed
- Version control

RUN JOBS ONLY WHEN NEEDED

DELTA & ORCHESTRATION

Only kick off a job when data changes!



Without Delta Lake

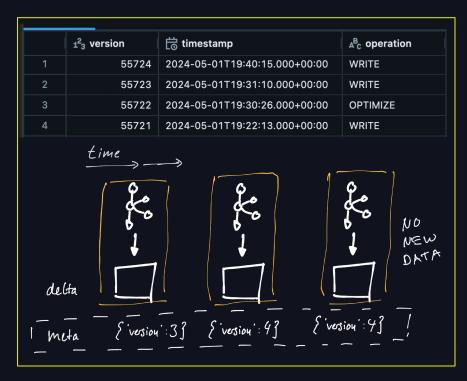
- Reactive in-house scheduler
- Runs when upstream ran

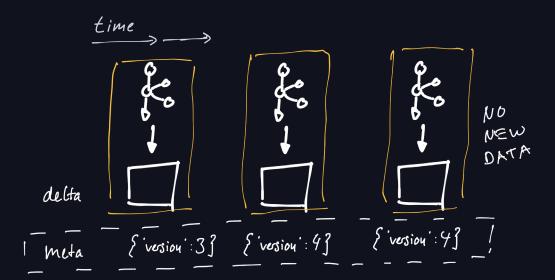
With Delta Lake

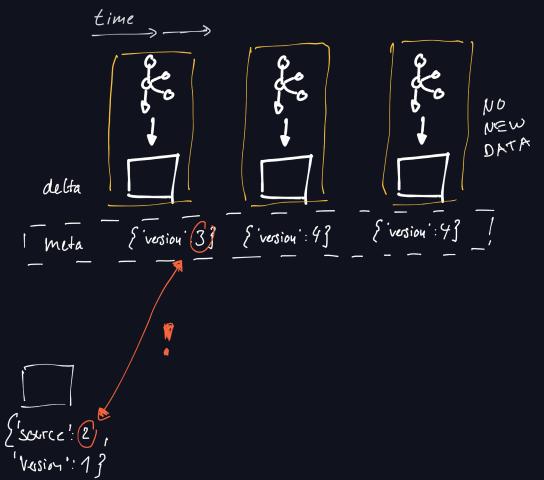
 Run only if delta log shows data changed

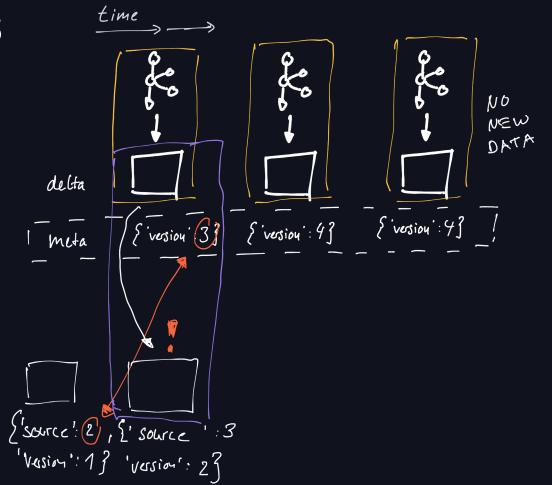
ONLY RUN ON DATA CHANGE

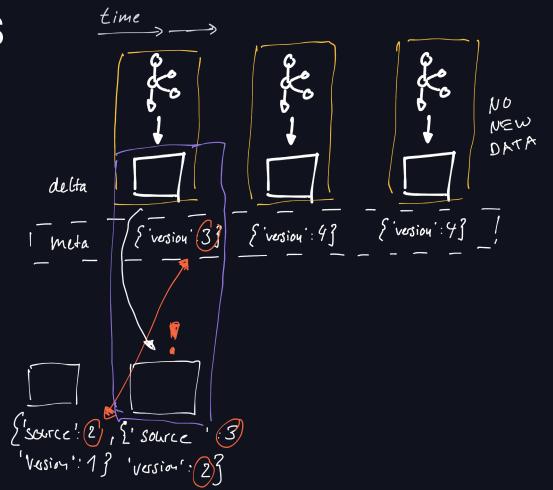
- Metadata at the destination which delta version the table has
- Downstream job uses that version and the version it used last

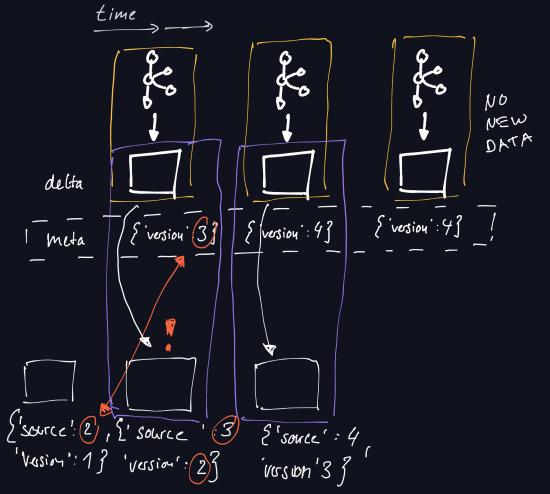


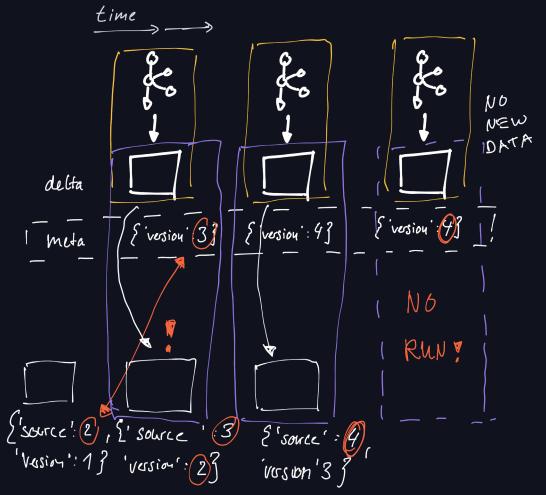












TL;DR

Opportunities

- Smarter scheduling of jobs: "only when needed"
- Reduced our daily job executions by >10%
- Great for Structured Streaming where data is not constantly being updated -> slow changing data

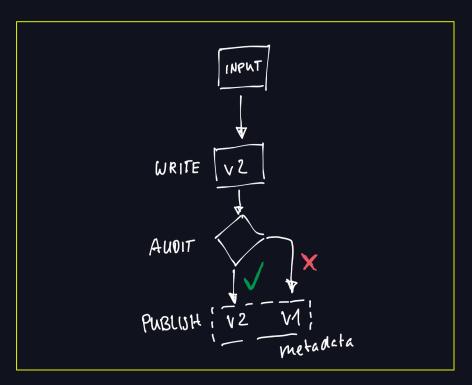
Pitfalls

 Need to take care of VACUUM/OPTIMIZE entries -> make sure streams can catch up

WRITE AUDIT PUBLISH

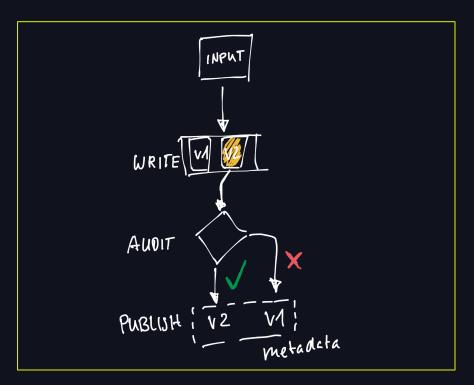
WAP - BATCH

- Run job and commit data
- Validate the entire dataset
 - **\rightarrow**: save latest version in meta
 - X: keep previous version in meta
- Readers read version specified in metadata and downstream will not run (previous section)



WAP - STRUCTURED STREAMING

- Run job and commit data
- Validate the latest changes only
 - ✓: save latest version in meta
 - X: keep previous version in meta
- Readers read version specified in metadata



TIP - STRUCTURED STREAMING

Enable change data feed

PYTHON # function to enable change data feed if not vet enabled def enable_change_feed_if_table_exists(self, spark: SparkSession, table_path: str): if DeltaTable.isDeltaTable(spark, table_path): dt = DeltaTable.forPath(spark, table_path) props: Dict[str, str] = dt.detail().select("properties").collect()[0][0] if props.get("delta.enableChangeDataFeed") != "true": # Enable change feed for future versions. spark.sql(f"ALTER TABLE delta.`{table_path}` SET TBLPROPERTIES (delta.enableChangeDataFeed = true)")

TIP - STRUCTURED STREAMING

Validate latest commit only

```
PYTHON
def get_latest_append_batch(spark: SparkSession, filename: str) -> DataFrame:
   dt = DeltaTable.forPath(spark, filename)
   history = (
        dt.history(10)
        .filter(F.col("operation").isin(["WRITE", "STREAMING UPDATE"]))
        .select("version", "timestamp")
   latest_version = history.collect()[0][0]
   return (
        spark.read.format("delta")
        .option("readChangeFeed", "true")
        .option("startingVersion", latest_version)
        .load(filename)
```

TL;DR

Opportunities

- WAP is the best pattern to prevent bad data as early as possible
- Regular (~weekly) prevention of bad data/bad predictions being published
- Structured Streaming has limited WAP benefits, but freshness is often a great one

Pitfalls

- The strength of WAP goes down with the size of the micro batch -> the closer you are to real time/small batches the less you can use WAP
- Implementing WAP with Delta Lake depends very much on your ability to integrate this with your tooling/orchestration

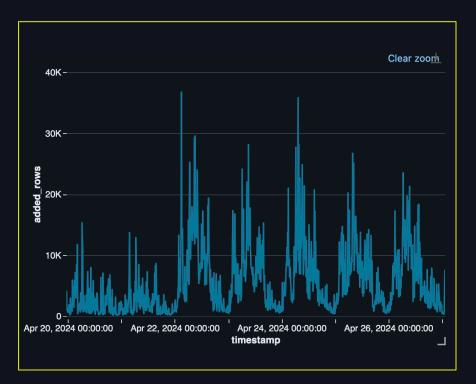
USE ML TO DETECT STREAMING ISSUES

VELOCITY OF DATA

Delta log to the rescue

THRESHOLDS DO NOT WORK!

- How to set min and max?
- How to deal with daily/weekly trends?



ML BASED ALERTING

- Get velocity data from delta log
- Train auto-ML model
- Alert when velocity is off on job runtime
 - Check added rows from latest commit/time vs expected velocity

ML BASED ALERTING

In prod

TL;DR

Opportunities

- Get observability/alerts on when data velocity is not as expected
- Great for regularly incoming data with strong week/day/season patterns
- Prophet was all we used

Pitfalls

- Low velocity data is impossible to predict well
- Need to smooth the data a little to not be too noisy
- Beware of Structured Streams that commit multiple times per micro batch -> e.g. Kafka tombstones

